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Abstract— Two motivating problems in multi-agent robotics
are the exploration problem of discovering an unknown en-
vironment and the observation problem of maintaining as
much visibility over the environment. Together, they can be
formulated as a version of the deployment problem, where we
must try to evenly distribute agents through an environment
while mainting observation of the environment. Visibility-
Voronoi algorithms give a realistic and tractable solution -
in this paper, I extend an algorithm given by Kantars et al.
towards unknown environments. In addition, I analyze and
show promising results for the use of time-varying density
functions in influencing robot behavior.

I. INTRODUCTION

The advent and proliferation of mobile robotics has made
it possible for multi-agent robotic systems to perform a
wide variety of tasks, including exploration, observation,
and coordinated motion. These different mechanisms have
significant impacts in wide-ranging fields from disaster re-
sponse to environmental monitoring and surveillance. Two
well-studied fields of multi-agent robotics include the explo-
ration problem and and the observation problem. Multi-agent
exploration requires the coordination of a robotic system
through an unknown environment, usually by coordinating
through algorithms like Simultaneous Localization and Map-
ping (SLAM). In contrast, the observation problem looks to
distribute agents in a way as to maximize the area of the
environment observed by the system. This is commonly done
using variants of Voronoi partitioning, by drawing equidistant
lines between neighboring agents.

A combination of these two questions forms a version
of the deployment problem - given a set of agents, how
do we evenly distribute them in an unknown environment
while maintaining observation of the environment? This was
partly answered in Kantaros, Thanou and Tzes (2015) [1],
in their formulation of Visibility-based Voronoi diagrams
(VbV). They present a gradient-descent control law for
robotic agents based on an agent’s visible environmental
area, assuming perfect knowledge of the environment and
maintaining communication links with other agents.

Taken one-step further, we can further imagine patrol or
dynamic monitoring systems built off of work from de-
ployment algorithms. This is achieved through time-varying
environmental density functions, which can influence robot
positioning and movement over time.
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I will first cover the Visibility-based Voronoi partitioning
method presented in [1], then introduce my notation for
operating the algorithm in unknown environments. The lim-
itations with such an algorithm motivates the use of a time-
varying reward density function for the environment, and
generates interesting patrol behavior for multi-agent systems.
Finally, I will present simulation results for the system, and
identify promising next steps.

II. DEPLOYMENT PROBLEM

First, I will go over the formulation for the generic deploy-
ment problem, which aims to spread a multi-robot system
across an unknown environment. We assume the robots
operate in a compact, non-convex environment A ∈ R2. A
density function φ(q) measures the reward for monitoring
any point q ∈ A. We define the boundary of any polygon
as δ(·), such that the boundary of A is represented by δ(A).
Because we assume the system does not have full awareness
of the environment, we define the robot system’s knowledge
of the boundaries of A at any moment in time as δ(A, t).
This time-varying knowledge of the boundary will influence
the response of robots.

A system of n robots monitors A, where the positions are
represented by X(t) = {x1(t), x2(t), . . . , xn(t)} ∈ A and
xi(t) ∈ R2, and each robot i has a sensor detection range
of ri. We use a very simple movement model - that is, we
define the movement of robots as:

xi(t+ 1) = xi(t) + ui(t), ui ∈ R2, ∀i = {1, . . . , n} (1)

This system has a sensor model based on a 360-degree
angle laser rangefinder. Assume that each robot has a sensor
range limit ri and takes k measurements such that each mea-
surement is separated by 360/k degrees. The measurements
si(xi, ω) where ω is the orientation of the robot will be:

si(xi, ω) =

{
ri [xi, ] /∈ A
‖qAi − xi‖ [xi, xi + ri(cos(ω), sin(ω))] ∈ A

(2)
where xAi = xi + ri(cos(ω), sin(ω)) is the endpoint of a

ray from xi in the direction of ω with length ri, and qAi =
[xi, xi+ ri(cos(ω), sin(ω))]∩ δ(A) is the intersection of the
ray with the boundary δ(A).

In addition, we assume that the robots are unlimited in
communication range and bandwidth.



III. VISIBILITY-BASED VORONOI DIAGRAMS

In this section I will review the VbV formulation given
in [1]. This is important for understanding the gradient
descent method that Kantaros presents, and will motivate
our modifications to the density function.

We will first define the set of visible points from robot i
as V P i, where:

V P i = {q ∈ A|[xi, q] ∈ A} (3)

[xi, q] is the line segment between an arbitrary point q and
the location xi. V P i is thus the set of all points where [xi, q]
does not intersect δ(A).

Then, we define the "visibility disc" Ci as all points visible
from robot i and within radius ri:

Ci = {q ∈ V P i ∩Bi} (4)

where Bi = {q|‖q − xi‖ ≤ ri}.
This effectively models the set of points visible to an

omni-directional sensor in an arbitrary closed environment,
whether convex or non-convex. This work is based on Defn.
1 and 2 in [2].

Next, we can quickly introduce the concept of Voronoi
diagrams. In general, for points x1, . . . xn ∈ B, where B is
a convex and compact environment, the Voronoi polygon Vi
for point xi is defined as:

Vi = {q ∈ A|‖q − xi‖ ≤ ‖q − xj‖∀j ∈ 1, . . . n 6= i} (5)

In essence, the Voronoi polygon for a point xi is the
set of all points closer to xi than any other point xj .
Our formulation of the non-convex deployment problem
requires two modifications to this definition: first, we are
considering heterogenous sensor radii ri, which complicates
the definition of distance; and second, the non-convexity of
our environment requires us to incorporate the concept of
visibility polygons introduced above.

To address the first issue, the authors in [2] use a power
diagram to divide points between different agents. In Defn.
3, they define the Voronoi power diagram V ipd for robot i as:

V ipd = {q ∈ A| ‖q−xi‖2−r2i ≤ ‖q−xj‖2−r2j ∀j 6= i} (6)

We can then incorporate the concept of range-limited
visibility polygons by using our definition of Ci set earlier.
We thus define the range-limited Voronoi polygon V ir,pd as
the intersection between the Voronoi power diagram and our
range-limited polygon:

V ir,pd = {q ∈ V ipd ∩ Ci} (7)

This is illustrated best in Fig. 1 of [2].

IV. MOTION CONTROL

In this section, I’ll discuss the control law we’ll use to
move the robot around the environment. In addition, we can
demonstrate that the control law presented in [1] and [2]
also consistently works when the robot explores an unknown
boundary.

A. Control Law

Kantaros et al. propose a gradient based control law in
[1] and [2] based on the visibility boundaries of a robot. We
define 4 types of boundaries:

1) A robot’s boundary with the environment δ(A)
2) A robot’s visibility boundary with another robot
3) The range-limited boundary, where the robot’s view is

limited by the range of the sensor
4) The node-limited boundary, where the robot’s view is

limited by a non-convex corner of the environment
Of those boundary types, only the last two serve as indica-

tions of possible directions of exploration for the robot. They
are indicators of empty space for the system to expand into
and observe. We can move robots in a decentralized fashion
by observing the density function along those boundaries to
estimate the value gained from motion in any one direction.

The node-limited boundary is influenced by several vertex
points of the range-limited Voronoi polygon. Because it tries
to push the robot in directions that can see more of the space
around a non-convex point, it lies along the line from xi to
a non-convex point. We will define pib,l as the farther point
of a node-limited boundary, pia,l as the near point, and pir,l
as the non-convex corner defining this boundary. See Fig. 5
in [2] for an image description of the space.

Thus, the proposed control law is:

ui =

∫
δ(V i

pd∩δ(Bi)

φ(q)ni0(q)dq

+
∑

l=1,...,n

(
ni0

‖pir,l − xi‖

∫ δlmax

δlmin

φ(Q)δdδ

)

where Q = pir,l+δ
pir,l−xi

pir,l−xi
, δlmin = ‖pia−pir,l‖, and δlmax =

‖pib − pir,l‖.

B. Dealing With Unknown Environments

We can notice that the control law proposed above only
requires knowledge of the local boundaries around the robot,
including nonconvex corners of the environment. The control
law will still hold even if we base it on a robot’s own estimate
of the environmental boundaries.

Assume the system shares an occupancy map Aest =
{a1, . . . am} that represents points on δ(A) that have been
viewed by robots xi ∈ X , where aj = 1 if observed as
occupied by a robot and 0 otherwise. We can get a reasonably
accurate model for A from Aest by interpolating between
points in Aest. The 4 boundary types listed above can be
derived from Aest by the following methods:



1) Environmental boundary. Let the maximum distance
between points in Aest be ε = 360/k · ri (a function
of the robot sensor’s resolution), and let the smallest
width between two walls in A be wmin.
We build our interpolation as follows - for points
si(xi, ωj), si(xi, ωj+1), we identify the line
[si(xi, ωj), si(xi, ωj+1)] as an estimate for δ(A)
if ‖si(xi, ωj) − si(xi, ωj+1)‖ ≤ epsilon. Our major
worry is that a false boundary connecting across the
interior of A will be constructed. The estimation
proposed holds as an accurate estimate as long as
wmin > ε - if the smallest distance between opposite
walls of A is larger than the worst resolution, we
don’t have to worry about false boundaries being
constructed.

2) Visibility polygon boundaries. These boundaries be-
tween two adjacent visilbility polygons happen in free
space and are not directly dependent on A.

3) The range-limited boundary. Again, this also happens
in free space and is not directly dependent on A.

4) The node-limited boundary. This depends on the
non-convex corners of A, which we must some-
how identify from Aest. We can do this by looking
for consecutive measurements si(xi, ωj), si(xi, ωj+1)
where si(xi, ωj) = ri and si(xi, ωj+1) ≤ ri, and
[si(xi, ωj), si(xi, ωj+1)] /∈ δ(A).
We can note that if ‖si(xi, ωj) − si(xi, ωj+1)‖ >
epsilon, then it is likely that the points are not in
δ(A). Then, we can construct a node-limited boundary
by taking the boundary defined by δ(A) and taking the
non-convex node at the point where [xi, si(xi, ωj)] =
δ(A). This construction can be estimated using other
measured values, eg. [si(xi, ωj+1), si(xi, ωj+2)] ∈ A.

Given these methods for identifying the boundaries used in
Kantaros et al. for calculating the gradient, we can calculate
the control law given in (8) in unknown environments.

V. TIME-VARYING DENSITY FIELDS

One potential problem with the control law proposed in [1]
and [2] is the slower exploration speed of the environment.
If a robot is not touching any adjacent robot’s range-limited
Voronoi polygon, there is no differential gradient pushing the
robot towards a direction. Two forces as a result of range-
limited boundaries on opposite sides of a robot’s Voronoi
polygon will cancel out (pointing in opposite directions), so
a robot can end up stuck in local minima and unmoving
if other robots don’t interact with it and disrupt its range-
limited boundary. This is in fact how the algorithm presented
in [2] is shown to terminate if the total area coverage of the
robot’s sensors is less than the area of the environment (see
Fig. 10 in [2]).

To overcome this fact, I experimented with time-varying
density functions φ(t, q) = [1, 0]. In general, time-varying
density functions play a role as follows:

1) Every point q ∈ A in the environment begins with
φ(0, q) = 1.

2) If a point q ∈ A is not visible from any robot, it
"regenerates" density at time t:

φ(t+ 1, q) = φ(t, q) + α ·max(0, β − φ(t, q)) (8)

where α ∈ (0, 1), β ∈ (0, 1]. This is an exponentially
regenerating function. If φ(t0, q) = 0, then:

φ(t0 + t, q) = β − e−αβt (9)

This equation caps the regenerated value at β.
3) If a point q is within a robot’s range-limited Voronoi

polygon V ir,pd at time t, its density φ(t+ 1, q) = 0.
4) This density distribution is then used to calculate the

control law, and we repeat Steps 2-3.
This density law encourages exploration by robots on

the frontier of the explored area δ(A, t), yet will still pull
following robots to spread out around A.

Even more notably, this regeneration effect encourages
robots to revist points and defines non-deterministic patrol
behavior from the system of robots. While I have not
theoretical results, it seems that given enough robots the
system will tend towards robots patrolling certain defined
sectors of the environment. This can be seen better in the
simulation results given in the next section.

VI. SIMULATION RESULTS

I implemented and ran the control law presented in [2]
with both static and time-varying density fields in unknown
environments in MATLAB. I tested it on a system of 10
robots, starting in two locations, and used the same system
for both static and time-varying tests.

A. Static

Fig. 1. Static density function, ran for 433 iterations. System finds local
minima at this point and stops progressing

The static simulation results are presented in Fig. 1. Each
robot is shown in a different color, with a trail marking its



path taken. The black marks along the border of the en-
vironment show points along δ(A) that have been identified
and viewed. Because each robot has found a local minimum,
where the gradient forces in every direction cancel out, the
system stops at this point.

B. Time-Varying

Fig. 2. Time-varying density function, ran for 1000 iterations. Patterns
begin to emerge in agent actions.

Fig. 3. Visibility map, showing the state of the visibility density after 1000
iterations

Fig. 2 shows the paths taken by 10 robots over 1000
iterations in the same environment and starting positions
presented in the static case. The border is less clearly
marked due to some restarts while running the simulation.
Fig. 3 visulaizes the time-varying density function, with
darker areas closer to 1 and lighter areas closer to 0.
Each robot is tracing out a "trail" in the density function
that encourages other robots to explore around rather than
retracing. Animated gifs of the simulation can be found at:
https://imgur.com/a/6mBaNhY.

This method was effective in more quickly exploring the
environement, as the leading robot quickly jumped ahead
as a result of the density differential artificially generated

by setting explored points to zero density. Patterns of patrol
begin to emerge, as robots balance out the areas they monitor.

VII. REFLECTIONS

I had a lot of fun working on simulations and building out
the project, although a tight schedule prevented me from fur-
ther developing some points. A lot of the ideas from gradient
descent and objective functions were useful in understanding
some aspects of this project. I would have enjoyed some
discussions of multi-agent systems or maybe even multi-arm
path planning, but those are minor considerations compared
to the large amount of robotics knowledge ES 159 taught.

VIII. CONCLUSIONS

There are many more promising applications of time-
varying density functions in order to control multi-agent sys-
tems. This paper highlights promising avenues of theoretical
research in time-varying functions, as well as extending and
proving some of the results from Kantaros et al. in unknown
environments.
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